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1-body

2-bodyFIG. 4: The deuteron decay via n� n̄ oscillation. LO + NLO are shown.

FIG. 5: Deuteron ! deuteron amplitude via n� n̄.

Therefore, ⌃Ndecay, at least up to NLO, is pure imaginary, and the deuteron decay width is found

to be

�N decay
d =

⇣
�n decay + �p decay

⌘
(1 + ⇢) . (29)

B. Via n� n̄

Now we calculate the deuteron decay width via n � n̄. The LO and NLO are given by Fig. 4

with the final states Vn summed over. The total annihilation cross section of n̄p is needed in order

to obtain the deuteron decay width from Fig. 4. This can be achieved through the imaginary part

of the n̄p elastic scattering amplitude by optical theorem.

In NLO, the UV divergence in the 2-point n̄� p loop can be absorbed into bare parameter Dt
T

in the same way as Eq. (17) is obtained. Up to NLO, Fig. 5 gives
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We arrive at, up to NLO,
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t
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⇤
. (31)

On the other hand, the deuteron decay can be caused by other |�B| = 2 operators such as

NN ! mesons terms in the Lagrangian (20), see Fig. 6. Assuming that the power counting is

consistent with naive dimensional analysis, we estimate the size of the deuteron decay amplitude

in Fig. 6. For simplicity, consider the cases in which Vm = Wm. Notice that Am in Eq. (15) has

the same dimension as ⇠m term in Eq. (20). On the other hand, we expect ⇠m / ⌧
�1
nn̄ because they

are generated by the similar operators at quark level. Therefore, the most optimistic esitmation
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FIG. 6: Deuteron decay via NN ! mesons.

for the size of ⇠m is ⇠m ⇠ ⌧
�1
nn̄An/Mhi. In addition, the extra antinucleon propagator in LO of

Fig. 4 contributes ⇠ mN/
2. We conclude on the dimensional ground that the contribution of

Fig. 6, relative to LO in Fig. 4 is suppresed by O(2/mNMhi). This power counting is justified

by renormalization. The fact that the decay width in Eq. (31) does not posses any UV divergence

makes it unnecessary to entail ⇠ns as short-range counterterms in LO and/or NLO. The conclusion

that the contributions from Fig. 6 are small is significant in that other |�B| = 2 interations would

not contaminate the extraction of n� n̄ oscillation time from the life time of the deuteron.

We have expressed the deuteron width in terms of the 3
S1 n̄p scattering length, atn̄p. Unfor-

tunately, low-energy N̄N data are scarce, especially in the n̄p channel. This channel has isospin

I = 1, which, together with I = 0 states, contributes also to p̄p and n̄n scattering. An e↵ective-

range analysis that includes the Coulomb interaction can be used to disentangle the I = 0, 1

components. However, to the best of our knowledge only spin-averaged scattering lengths aavI have

been determined this way, and in particular [32]

a
av
1 = � (0.3 + i0.8) fm. (32)

It is di�cult to estimate the uncertainty in this determination but it is possibly of the order of

50% if one compares with previous determinations of the same type [32]. Moreover, an attempt to

isolate the 3
S1 component in p̄p leads to Im(atp̄p) of about half this size [33]. If we replace a

t
n̄p in

Eq. (31) by a
av
1 , we find at LO

�n�n̄ ,(0)
d = ⌧

�2
nn̄

⇥
(0.43± 0.12)⇥ 10�22sec

⇤
, (33)

while LO + NLO is

�n�n̄ ,(0+1)
d = ⌧

�2
nn̄

⇥
(0.84± 0.17)⇥ 10�22sec

⇤
. (34)

replace numbers above

The fairly large correction is due to the numerical di↵erence between the real and imaginary

part of atp̄p and that ⇢ ⇠ 0.4. Ref. [20] has the closest approach to ours and hence the closest

numerical result,

�n�n̄
d = ⌧

�2
nn̄

⇥
(0.5� 0.8)⇥ 10�22sec

⇤
. (35)
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Four Dim-9 operators
• SM gauge invariant

• 6-quark operators to produce |ΔB| = 2
Important for 
building hadronic 
operators in chiral 
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Includes all symmetries of QCD, especially (approximate) 
chiral symmetry and its spontaneous breaking

Flavor u d s

Charge [e] 2/3 −1/3 −1/3

Mass [MeV] 1.5 − 3.3 3.5 − 6.0 70 − 130

Flavor c b t

Charge [e] 2/3 −1/3 2/3

Mass [GeV] 1.27+0.07
−0.11 4.20+0.17

−0.07 171.2 ± 2.1

Table 2: Quark flavors and their charges and masses. See [Manohar and Sachrajda, 2008] for details.

Suppressing the Dirac spinor index and introducing for each quark flavor f a color triplet

qf =




qf,1

qf,2

qf,3



 , (2)

the gauge principle is applied with respect to the group SU(3), i.e., all qf are subject to the same local
SU(3) transformation:

qf "→ q′f = exp

(

−i
8∑

a=1

Θa
λc

a

2

)

qf = Uqf , (3)

where the eight λc
a denote Gell-Mann matrices acting in color space and the Θa are smooth, real functions

in Minkowski space. Whenever convenient, we will make use of the summation convention implying a
summation over repeated indices. Introducing eight gauge potentials Aaµ, transforming as

Aµ ≡ Aaµ
λc

a

2
"→ A′

µ = UAµU
† +

i

g3
∂µUU †, (4)

the covariant derivative of the quark field, by construction, transforms as the quark field:

Dµqf ≡ (∂µ + ig3Aµ)qf "→ (Dµqf)
′ = D′

µq
′
f = UDµqf . (5)

In Eq. (5), g3 denotes the strong coupling constant. In order to treat the gauge potentials as dynamical
degrees of freedom, one defines a generalization of the field strength tensor to the non-Abelian case as

Gaµν = ∂µAaν − ∂νAaµ − g3fabcAbµAcν, (6)

where, suppressing the superscript c in the Gell-Mann matrices, the standard totally antisymmetric
SU(3) structure constants are given by (see Table 3)

fabc =
1

4i
Tr([λa,λb]λc). (7)

Given Eq. (4), the field strength tensor transforms under SU(3) as

Gµν ≡ Gaµν
λc

a

2
"→ UGµνU

†. (8)

The QCD Lagrangian obtained by applying the gauge principle to the free Lagrangian of Eq. (1), finally,
reads

LQCD =
∑

f= u,d,s,
c,b,t

q̄f(iD/ − mf )qf − 1

4
GaµνGµν

a . (9)

5
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2.1.2. Chiral limit
The terminology chiral limit refers to massless quarks, resulting in an important additional global symmetry of the QCD

Lagrangian which will be discussed in the following. We introduce the chirality matrix �5 = � 5 = i� 0� 1� 2� 3 = �
Ñ
5 ,

{� µ, �5} = 0, � 2
5 = 1, and define the projection operators

PL =
1
2
(1� �5) = PÑ

L , PR =
1
2
(1+ �5) = PÑ

R . (11)

These operators satisfy the completeness relation PL + PR = 1, are idempotent, P2
L = PL, P2

R = PR, and respect the orthog-
onality relations PLPR = PRPL = 0. When applied to the solutions of the free massless Dirac equation, the operators PR and
PL project to the positive and negative helicity eigenstates — hence the subscripts R and L for right-handed and left-handed,
respectively.

Omitting color and flavor indices, we introduce left- and right-handed quark fields as

qL = PLq and qR = PRq. (12)

A quadratic form containing any of the 16 independent 4 ⇥ 4 matrices {1, � µ, �5, �
µ�5, �

µ⌫} can be decomposed as

q̄�iq =

⇢
q̄L�1qL + q̄R�1qR for �1 2 {� µ, � µ�5}

q̄R�2qL + q̄L�2qR for �2 2 {1, �5, �
µ⌫

},
(13)

where

q̄R = q̄PL and q̄L = q̄PR.

The validity of Eq. (13) is general and does not refer to ‘‘massless’’ quark fields.
From a phenomenological point of view, the u and d quarks and, to a lesser extent, also the s quark have relatively small

masses in comparison to a typical hadronic scale of the order of 1 GeV. On the other hand, we will neglect the three heavy
quarks c , b, and t , because we will restrict ourselves to energies well below the production threshold of particles containing
a heavy (anti-) quark. In the following, we will approximate the full QCD Lagrangian by its light-flavor version, and will
consider the chiral limit for the three light quarks u, d, and s. To that end, we apply Eq. (13) to the term containing the
contraction of the covariant derivative with � µ. This quadratic quark form decouples into the sum of two terms which
connect only left-handed with left-handed and right-handed with right-handed quark fields. The QCD Lagrangian in the
chiral limit can then be written as

L0
QCD =

X

l=u,d,s

(q̄R,li 6D qR,l + q̄L,li 6D qL,l) �
1
4

Gaµ⌫G
µ⌫
a . (14)

Note that, because of Eq. (13), the quark-mass term generates a coupling between left- and right-handed quark fields.

2.1.3. Global symmetry currents of the light quark sector
Due to the flavor independence of the covariant derivative, L0

QCD is invariant under the infinitesimal global transforma-
tions of the left- and right-handed quark fields,

qL ⌘

 uL
dL
sL

!

7!

 

1� i
8X

a=1

✏L
a
�a

2
� i✏L

!

qL,

qR ⌘

 uR
dR
sR

!

7!

 

1� i
8X

a=1

✏R
a
�a

2
� i✏R

!

qR. (15)

Note that the Gell-Mannmatrices act in flavor space.L0
QCD is said to have a classical globalU(3)L⇥U(3)R symmetry. Applying

Noether’s theorem [21–23], from such an invariance, one would expect a total of 2 ⇥ (8 + 1) = 18 conserved currents:

Lµ
a = q̄L� µ �a

2
qL, Lµ

= q̄L� µqL, Rµ
a = q̄R� µ �a

2
qR, Rµ

= q̄R� µqR. (16)

Making use of

PL� µPR ± PR� µPL =

⇢
� µ

� µ�5,

we introduce the linear combinations

Vµ
a = Rµ

a + Lµ
a = q̄� µ �a

2
q, (17)

Aµ
a = Rµ

a � Lµ
a = q̄� µ�5

�a

2
q, (18)
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quarks c , b, and t , because we will restrict ourselves to energies well below the production threshold of particles containing
a heavy (anti-) quark. In the following, we will approximate the full QCD Lagrangian by its light-flavor version, and will
consider the chiral limit for the three light quarks u, d, and s. To that end, we apply Eq. (13) to the term containing the
contraction of the covariant derivative with � µ. This quadratic quark form decouples into the sum of two terms which
connect only left-handed with left-handed and right-handed with right-handed quark fields. The QCD Lagrangian in the
chiral limit can then be written as

L0
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X

l=u,d,s

(q̄R,li 6D qR,l + q̄L,li 6D qL,l) �
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Note that, because of Eq. (13), the quark-mass term generates a coupling between left- and right-handed quark fields.

2.1.3. Global symmetry currents of the light quark sector
Due to the flavor independence of the covariant derivative, L0

QCD is invariant under the infinitesimal global transforma-
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Note that the Gell-Mannmatrices act in flavor space.L0
QCD is said to have a classical globalU(3)L⇥U(3)R symmetry. Applying

Noether’s theorem [21–23], from such an invariance, one would expect a total of 2 ⇥ (8 + 1) = 18 conserved currents:
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Making use of

PL� µPR ± PR� µPL =

⇢
� µ

� µ�5,

we introduce the linear combinations
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2
q, (17)
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2.1.2. Chiral limit
The terminology chiral limit refers to massless quarks, resulting in an important additional global symmetry of the QCD
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Lagrangian invariant when mf → 0, but broken by QCD ground state 

Chiral EFT

→ chiral symmetry nonlinearly 
realized by hadronic Dofs

CCWZ; Weinberg; …

• Only two flavors used in present work



   Λχ

• Chiral L: a hadronic Lagrangian to respect chiral sym. and its 
spontaneous breaking

N:  nucleon 
Nc:  anti-nucleon 
π:  pion



Low-energy approximation of QCD, expansion in Q/M_hi 
Q:(small momenta), M_hi ~ 1GeV

M =
X

n

✓
Q

Mhi

◆n

Fn

✓
Q

Mlo

◆ Q: generic external momenta,

Mlo = m⇡, f⇡ ⇠ 100MeV

Mhi = ⇤SB ,m⇢, · · · ⇠ 1GeV

Systematic approximation 
→  able to estimate theoretical errors  

Goal



Power of counting



How to count size of LECs?

24 contacts 
in naive dim. 
analysis up to Q4 



Renormalization group invariance

• In practice, UV cutoff Λ or ren. scale µ independence 

• Start with a power counting by NDA 

• If it provides enough short-range LECs to absorb UV div, then it 
is acceptable 

• Used to show three-body force is leading order in pionless EFT 
(Bedaque, Hammer & van Kolck ’99 & ’00)

C ! C(⇤)e�
p02+p2

⇤2
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One more trick

• NNbar annihilation releases 2GeV kinetic energy, way beyond 
chiral EFT break down scale 

• To get around, calculate deuteron life time by imaginary part of 
deuteron self energy 

• hard pions integrated out as intermediate states



More Lagrangian terms

NN contacts

NNbar contacts

N

N

<latexit sha1_base64="Xx7PiZY6wqxTX3MoT0pjRpeaTLQ="></latexit>

N
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N



|ΔB| = 2 terms

nnbar oscillation

N

N

<latexit sha1_base64="Xx7PiZY6wqxTX3MoT0pjRpeaTLQ="></latexit>

N

N

(For LQCD calculation on delta m, Rinaldi et al. ’18 & ’19)

N N

N N

ImC0
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NN direct annihilation



Deuteron self energy up to NLO
LO

• By RG analysis, NN → NNbar appears at NLO → 

• Range correction of NN interaction (B-conserving) 

• NNbar interaction parametrized by (anti-n p) scattering length  
anbar-p = (0.44 - i 0.96) fm (Zhou & Timmermans ’12 & ’13)

Perturbative pion 
counting rule 
(Kaplan, Savage & Wise 
PLB 424, 390 (98))

B̃0
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expansion parameter 
→ d

F⇡
' 0.24
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κd : deuteron binding 
mometum ~ 45 MeV



Finally…

NN range
Re(anbar-p)

pion
NN $ NN̄
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w/ unknown B0

• Perturbative pion allows for analytic expression 

• Loosely bound neutron helps sensitivity (nuclei with neutron halo?) 

• B0 gives largest uncertainty 

• W/ nonperturbative pion EFT, unknown LECs may have smaller impact


